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Abstract %
Introduction: Both hypoglycemia (low blood glucose) and hyperglycemia (high
are common among individuals with type 1 diabetes and are associated with Ic
complications, therefore it is essential that health care providers are ab tely sure

glycemic control. Measures derived from continuous glucose moni M) may provide

more accurate measurements of glycemia than the commonl od test.

Methods: Data from the Juvenile Diabetes Research RF) clinical trial to assess

the efficacy of continuous glucose monitorin sedtoe te the ability of CGM
composite scores to predict time in rang cemia and time in hypoglycemia.
Spearman partial correlation coefficien re ulated between composite measures and

thresholds of glycemia.

Results: HbAlc showed correlations with time below 54 mg/dL (R = -0.05) and time

below 70 mg/d ¢ was moderately correlated with time in range (R = -0.62),
however, % derived metrics had stronger correlations. HbAlc was also

mo

0. 0

cor d with time above 180 mg/dL (R = 0.68) and time above 250 mg/dL (R =
w everal CGM derived composite scores including the J-index, GRADE, the Q-

, CGP, and PGS all had stronger correlations with time in hyperglycemia (Table 3).

clusions: HbA1c is a poor predictor of time in hypoglycemia and moderately correlated with
time in hyperglycemia. Several composite metrics had stronger correlations with both hypo and

hyperglycemia than HbAlc and were better predictors of meeting clinical targets.



Introduction and Review of Literature
Type 1 diabetes (T1D) is a chronic disease in which the immune system at
body’s insulin producing beta cells (Marca, Gianchecchi, & Fierabrachi, 201
cells the body cannot produce insulin, which is needed to convert gluc rgy rca et
al., 2018). Therefore, people with T1D must manually administerdfnsuli either an insulin
pump or through daily injections (Danne et al., 2017). If an i y of insulin is
administered this will result in an excess of glucose i

as hyperglycemia (Beck

et al., 2019). Hyperglycemia is associated with ral lon complications including

diabetic retinopathy, nephropathy, autonomi ral neuropathy, and cardiovascular
disease (Beck et al., 2019; Nathan, 2018; Viger, ., 2018). If excess insulin is
administered, this results inan i ient of glucose in the blood, known as
hypoglycemia (AmericandRiabetes iation [ADA], 2019; Hirsch et al., 2017).
Hypoglycemia is as several short-term complications such as rapid heart rate,
dizziness, shortnes eizures, loss of consciousness and in serious cases death (ADA,
orrect amount of insulin can be a challenge for those with T1D as the
uired changes based on changes in diet and physical activity (ADA, 2019).
, it IS'essential for T1D patients to continuously monitor their glucose in order to

r the appropriate amount of insulin and prevent long- and short-term complications

f hypoglycemia and hyperglycemia, and it is important for providers to assess the glycemic

control of their patients.



Currently the gold standard for measuring glycemic control is hemoglobin Alc (HbAlc)

(Beck, Connor, Mullen, Wesley, & Bergenstal, 2017; Bergenstal et al., 2018; Khonert, 2015).

Overtime, small amounts of glucose will attach to hemoglobin molecules in the red blood cell
Researchers found that concentrations of glycated hemoglobin are directly proportion
individual’s mean glucose over a three month period, with a higher HbAlc indi
mean glucose over time (Beck et al., 2017). The Diabetes Control and Co tio

(DCCT), a ten year trial conducted from 1983 — 1993 among individ ith and 2

diabetes, established that HbAlc was a strong predictor of lon be mplications
1

(Nathan, 2013). However, there are several disadvantage a measure of
glycemic control.

One disadvantage is that a single val 1c can be associated with a wide range of
mean glucose values. Beck et al. (2017 ed e with an HbAlc of 6% could have a
mean glucose anywhere betwee mg/dL, those with an HbAlc of 7% could
have a mean from 128 mg/dL to 1 nd those with an HbA1c of 8% could have a mean
from 155 mg/dL to m Therefore, it is difficult to identify from the HbAlc alone if a
person’s averag been in a healthy range. HbAlc is only moderately correlated with

time spent in hyperglycemia, and weekly correlated with time spent

els are constant (Cohen et al., 2008). For two people with the same mean glucose
time, the person with a higher red blood cell lifespan will have a higher HbAlc, as their
cells have been exposed to glucose for longer. Abnormally low or high red blood cell lifespans

can be caused by medical conditions such as anemia, high triglyceride levels, pregnancy, and red



blood cell transfusion, however even in the absence of these conditions there is still some inter-

individual variation in life span (Cohen et al., 2008).

Alternative methods of measuring glycemic control that do not have the same
disadvantages as Alc are possible through the use of continuous glucose monitoring, (

devices. The continuous glucose monitor is a device worn by T1D patients and

i,S sta,
ich erted under

ransmits the

measurement of glucose every 5 minutes (Danne et al., 2017; Henriques
& Goldberger, 2014). The device consists of three components; a sens
the skin to measure glucose, the transmitter, which is attache
glucose reading to the receiver, and a device which displ

I’s glucose levels in

real time (Danne et al., 2017). In addition to helping tho etter control their glucose,

data from CGM devices can be used to calc V. s measures of glycemic control such as

mean glucose, glucose variability, perc es healthy range (70-180 mg/dL), percent
time spent in hyperglycemia (> rcent time spent in hypoglycemia (<70
mg/dL) (Beck et al., 2019; Service, e indices on which physicians most rely when

evaluating a patient’sggluc ntrol are the time spent in thresholds of hypoglycemia,

hyperglycemia he lyeemic range (Beck et al., 2019; Costa, Enriques, Munshi, Segal,

& Goldb le these individual indices provide quality information on different

asp per: glycemic control, it is challenging for clinicians to assess a patients overall
\ any different metrics (Hirsch et al., 2017; Khonert, 2015) and up to date there
ingle standard measure for evaluating an individual’s glycemic control using CGM data,
h many metrics have been proposed (Khonert, 2015; Peyser, Balo, Buckingham, Hirsch, &
Garcia, 2018). This also poses a challenge for clinical research as the primary end point in

diabetes clinical trials is usually glucose control, and none of these indices used alone can



appropriately reflect a person’s overall control. Therefore, a measurement that is sensitive to

hyperglycemia risk, hypoglycemia risk, and time spent in a healthy range is needed.

There are many proposed metrics calculated using CGM that are intended to measure
patient’s overall glucose control. These include the following: Comprehensive gluc
(Vigersky et al., 2018), Personal Glycemic State (Hirsch et al., 2017), Average
(ADRR) (Khonert, 2015; Kovatchev, Otto, Cox, Gonder-Fredrick, & Cl
2009), Glycemic Risk Assessment Diabetes Equation (GRADE) (Hi , 2015), Q-
score (Augustein et al., 2015; Khonert, 2017), J-index (Servi anagement
Indicator (GMI) (Bergenstal et al., 2018), Glycemic Vari e (GVP) (Peyser et al.,
2018), Mean Amplitude of Glycemic Excursions (MA et al., 2011; Service,
2013), Mean of Daily Differences (MODD) lings et al., 2011; Service, 2013), and
Continuous Overall Net Glycemic Acti lings et al., 2011; Marics, 2015;
Service, 2013). The purpose of t d assess the correlation of CGM derived

composite metrics of glucose cont commonly used CGM indices of time in range,

time in hypoglycemiagan in hyperglycemia.

Hypothesis

In this ri

a rela
o e in a healthy range (70 mg/dL to 180 mg/dL)
[ ]
[ ]

alysis will test how well HbAlc and each of the CGM metrics listed

ith the following glycemic indices

ime in hyperglycemia (>180 mg/dL)

Time in severe hyperglycemia (>250 mg/dL)

Time in hypoglycemia (<70 mg/dL)



e Time in severe hypoglycemia (<54 mg/dL)

In 2019 the Advanced Technologies and Treatments for Diabetes (ATTD) congress

established clinical targets for commonly used CGM indices (Battelino et al., 2019). For

individuals with type 1 diabetes the clinical targets are outlined below:

e Time in Range (70-180 mg/dL): > 70%

Time > 180 mg/dL: <25%

Time > 250 mg/dL: <10%
Time < 70 mg/dL: <4%
Time < 54 mg/dL: <1%

ility of each of the CGM

As a secondary analysis, ROC curves will be to,assess t

metrics under study to predict whether iV IS meeting the clinical guidelines
established by ATTD.

&




Methods
Data Collection
This analysis used data collected from the Juvenile Diabetes Research F. i
(JDRF) randomized clinical trial to assess the efficacy of real time conti luco
monitoring in the management of type 1 diabetes (U.S., National Libr Me , 2017;
Tamborlane et al., 2008). This trial enrolled 451 participants 0 phases, each
phase lasting six months. In phase 1, participants were r d treatment group,

which was to wear an unblinded CGM device, or the ¢ hich consisted of wearing a

blinded CGM device (a device with no recei ase 2, participants in the control group

were given an unblinded CGM device, ere followed for an additional six
months. The dataset is publicly availabl iabetes.jaeb.org/RT_CGMRCTProtocol.aspx.
in this

Participants enrol re 8 years old or older, had a clinical diagnosis of

T1D foratleast 1y eline HbAlc of <10%. Participants were using either pump or

multiple daily i inister insulin in order to be eligible. Individuals were excluded
if they , had a diagnosis of asthma or cystic fibrosis, or received psychiatric
fous 6 months. Those who had used a CGM device in the previous 6

rw ere pregnant were also excluded (U.S., National Library of Medicine, 2017,

e etal., 2008).

ist of Measures
Data on participant’s age, gender, duration of T1D, insulin delivery method, BMI, socio-

economic status and other demographic and clinical characteristics were obtained through


http://diabetes.jaeb.org/RT_CGMRCTProtocol.aspx

participant questionnaires and medical chart data. Values for HbAlc were collected from a

central laboratory every 3 months, with a maximum of five values for each participant (U.S.,

National Library of Medicine, 2017; Tamborlane et al., 2008). The glucose indices were
calculated by taking the percentage of CGM records that fall within each specified ra
180 mg/dL, >180 mg/dL, etc.) out of all valid CGM records. Details on the calc
composite scores are provided in published literature (Augustein et al., 20
2018; Hill, 2007; Hirsch et al., 2017, Khonert, 2015; Khonert, 2017; che

Marics, 2015; McCall et al., 2009; Peyser et al., 2018; Rawlin 01 vice, 2013;

Vigersky et al., 2018).

Statistical Methods

Summary statistics were tabulated fo phic variables, clinical characteristics,
glucose indices, and CGM metrics (Ta lan and interquartile range were
reported for continuous variable nd proportions were reported for categorical
variables. v

Spearman p ons were used to assess the relationship between each CGM

mic indices (Table 3). This method is appropriate as the glycemic
indices ti f time > 250 mg/dL, time < 70 mg/dL, and time <54 mg/dL tend to be
n ted, requiring a non-parametric test (Beck et al., 2019). P-values testing
pothesis that correlation coefficients are not significantly different from 0 were

Correlations were adjusted for age, sex, race, highest education level, pump use,

etes duration, and treatment group.

Receiver Operating Characteristics (ROC) curves plot the sensitivity by 1 minus the

specificity of logistic regression models and the area under the curve. ROC curves measure the



model’s ability to predict an event versus a non-event. ROC curves were produced for each of

the 5 glycemic indices to indicate the predictive performance of each CGM metric (Figures 1-5)

in predicting if a participant met the ATTD clinical targets for the respective glycemic index.
Area under the curve was estimated using the c-statistic (Table 4). Data from the pri

(phase 1) of the JDRF trial was used to compute correlation coefficients and RO

All p-values reported were two-sided and all analysis will be per usin

&
4

version 9.4 (Cary, NC).
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Results

Participant characteristics are displayed in Table 1. Mean age at baseline w,
old, 248 (55%) of participants were female, 425 (94%) were white, 332 (74%

degree or higher, 367 (81%) used an insulin pump, and participants ha nosed with

diabetes for an average of 14 (£12) years. During the primary ph dy the median

time spent below 54 mg/dL was 0.6% (IQR: 0.2%-2%), me mg/dL was 4%

(IQR: 1%-6%), median time in range was 61% (IQR: time above 180 mg/dL

was 35% (IQR: 24%-46%), and median time abawe 250 m as 9% (IQR: 5%-17%).

Summary statistics for CGM derived measur ose control and variability as well as

HbA1c are shown in Table 2.

Table 1. Participant Demographi ical Characteristics

N =451

Age at baseline (yrs) — +SD 25+ 16
Female — N (%) 248 (55%)

Race — N (%)

425 (94%)

7 (2%)

19 (4%)
58 (13%)
61 (14%)
197 (44%)
100 (22%)

rate/Professional 35 (8%)

iabetes Duration (yrs) — Mean £ SD 14 +12
mp Users - N (%) 367 (81%)
Treatment Group 232 (51%)




Table 2. Summary Statistics for Continuous Glucose Monitor Derived Metrics and HbAlc by

Study Stage’?

Phase 1 Phase 2
HbAlc (%) 7.2 (6.8-7.7) 7.3 (6.8-7.8)
Time below 54 mg/dL (%) 0.6 (0.2-2) 0.6 (0.2-2)
Time below 70 mg/dL (%) 4 (1-6) 3 (2-6)
Time in Range (70-180 mg/dL) (%) 61 (50-71) 61 (51-71)
Time above 180 mg/dL (%) 35 (24-46) 34 (23-45)
Time above 250 mg/dL (%) 9 (5-17) 9 (4-16)
Pentagon Area 1081 (891-1401) 1066 (877-13
Personal Glycemic State 18 (13-22)
ADRR 40 (32-48)
GRADE 35 (32-39)
Q-Score 7.8 (5.6-10.5)
GMI (%) 7.2 (6.8-7.6)
J-Index 50 (40.6-63.6)
MAGE 117 (100-134
GVP (%)
MODD
CONGA: 29
CONGA. 42 (36-48)
CONGA4 51 43-59)

1. Shows median (interquartile range)

2. Summary statistics shown for hemoglobin Alc (H
state (PGS), average daily risk range (ADRR), glyce
management indicator (GMI), J-index, mea litu
continuous net glycemic action (CONGA)
mg/dL and time above 250 mg/dL.

diabetes equation (GRADE), Q-Score, glucose
excursions (MAGE), mean of daily differences (MODD),
L, time below 70 mg/dL, time in range , time above 180

HbA1c showed w

(
t

rrelations with time below 54 mg/dL (R = -0.05) and
time below 70 bAlc had a weaker correlation with time below 54 mg/dL

than any C

stro orre
ti low

VP, CONGA and CGP had moderate correlations with time below 54 mg/dL, while

rics, with the exception of the J-index (R =-0.01). ADRR had the
with time below 54 mg/dL (0.60) and the second strongest correlation with

g/dL (R = 0.45), with GRADE having the strongest correlation with time below

had a moderate correlation with time below 70 mg/dL (Table 3).

HbA1c was moderately correlated with time in range (R = -0.62), however all other CGM

derived metrics with the exception of GVP and CONGA: had stronger correlations. The Q-score

10



had the strongest correlation with time in range (R =-0.93), with J-index (R =-0.91), CGP (R = -

0.88), PGS (R =-0.88), and GMI (R = -0.85) also being strongly correlated with time in range.

HbA1c was also moderately correlated with time above 180 mg/dL (R = 0.68) and time abov
250 mg/dL (R = 064). GMI had the strongest correlation with time above 180 mg/dL
with J-index (R = 0.95) and GRADE (R = 0.95) also being highly correlated. J-i

strongest correlation with time above 250 mg/dL (R = 0.97) with Q-score 9 I

i \nt was meeting
i I mg/dL (AUC = 0.57),

). The model with ADRR

(R =0.89) also being highly correlated.

HbA1c had the lowest area under the curve when pre
the clinical targets for time below 54 mg/dL (AUC = 0.5
time in range (AUC = 0.79), and time above 250 mg/dL
correctly predicted if a participant was meeti inical target for time below 54 mg/dL 84%
of the time, and was more accurate tha the site score. GRADE and ADRR were
the best predictors of meeting th g/dL clinical target (GRADE AUC =0.73,
ADRR AUC =0.71). The models e, J-index, and CGP all predicted meeting the

clinical target for timeyin r correctly with 95% or greater accuracy, the Q-score and J-index
c

&

icting meeting the time above 250 mg/dL target (Table 4).

had greater tha en predicting meeting the clinical target for time above 180

h Q-score, J-index, CGP, and MODD all had greater than 95%

11



Table 3. Spearman Partial Correlations between HbAlc, Composite Metrics of Glycemic Control Deri inuous Glucose

Monitors and Time in Range, Time in Hypoglycemia, and Time in Hyperglycemia 123
T<s4 T<0 TRange T>250
R P Rank R P Rank R P Rank R P Rank
HbAlc -0.05 03449 11 |[-021 <0001 7 |-0.62 <0001 10 0.64 <0001 10
CGP 038 <0001 4 | 025 <0001 6 |-0.88 5 | 083 <0001 4
PGS 034 <0001 5 | 013 00107 10 |-0.88 3 | 084 <0001 3
ADRR 060 <0001 1 | 045 <0001 2 |-0.68 9 | 065 <0001 9
GRADE | 029 <0001 9 |[-052 <0001 1 |[-0.79 2 |08 <0001 5
Q-Score | 032  <.0001 7 | 015 00034 9 3 | 090 <0001 2
GMI(%) | 021 <0001 10 |-042 <0001 3 1 |08 <0001 3
J-Index | 001 08268 12 |-0.19 8 2 | 095 <0001 2 |097 <0001 1
MAGE 0.33 <0001 6 | 0.19 6 | 068 <0001 6 |08l <0001 6
GVP (%) | 044 <0001 2 | 026 12 | 039 <0001 10 | 049 <0001 12
MODD 031 <0001 8 | o021 5 | 070 <0001 4 | 083 <0001 4
CONGA1| 040 <0001 3 11 | 048 <0001 9 | 062 <0001 11
CONGA2 | 040 <0001 3 9 | 054 <0001 8 | 070 <0001 8
CONGAs | 038 <0001 4 7 | 059 <0001 7 |077 <0001 @7

1. Spearman partial correlations calc
2. Correlation coefficients adjusted f
3. Correlations between hemog
glycemic risk assessment
of daily differences (
180 mg/dL (T>180)

, tion, pump use, diabetes duration, and treatment group.

e comprehensive glucose pentagon area (CGP), personal glycemic state (PGS), average daily risk range (ADRR),
E), Q-Score, glucose management indicator (GMI), J-index, mean amplitude of glycemic excursions (MAGE), mean
ycemic action (CONGA) and time below 54 mg/dL (T<s4), time below 70 mg/dL (T<0), time in range (Trange), time above
L (T>2s0).

12



Discussion

The associations between composite measures of glycemic control, measur
variability, HbAlc and hyperglycemia, hypoglycemia and time in range wer
data from the JDRF randomized clinical trial to assess the efficacy of C
scores were strongly correlated with hypoglycemia, suggesting a
sensitive to changes in length of time and severity of hypog P, and CONGA
were moderately correlated with time in severe hypo ), and ADRR,
GRADE, and GMI were moderate correlated wi lycemia (< 70 mg/dL). GVP
and CONGA are measures of glucose variab ere more sensitive to time below 54
mg/dL than most other metrics, suggesting that ending more time <54 mg/dL have a
high variability of glucose level h suggested that hypoglycemia is associated
with glycemic variability fHachma , Bartholdy, Djurhoos, & Kvist, 2018). The

average daily risk ra e correlated with time below 54 mg/dL than any other metric,

likely because

and bot re gi
e AD

those'with a high risk score for hyperglycemia may have had lower risk scores of

sed of a hyperglycemic risk score and hypoglycemic risk score,

qual weight when calculating the composite score. This may also

ad weaker correlations with time in range and time in hyperglycemia, as

mia, moving the overall score towards the average despite a high risk of
hyperglycemia. GRADE was the strongest correlated metric with time below 70 mg/dL, with
ADRR having the second strongest correlation. Both GRADE and ADRR are calculated by

transforming each blood glucose measurement to reflect the risk of hypo/hyper glycemia, which

13



may have resulted in more weight being placed on hypoglycemic measurements compared to

other composite scores.

Table 4. Area Under the ROC Curves for Predicting Clinical Targets for Glycemic Ranggs
Established by Advanced Technologies and Treatments for Diabetes Congress®

T<sa T<70 TRange T>180

HbAlc 0.51 0.57 0.79 0.82 3
CGP 0.70 0.59 0.95 0. 0.96
PGS 0.70 0.56 0.93 0
ADRR 0.84 0.71 0.88 .
GRADE 0.60 0.73 0.90 0.96 0.87
Q-Score 0.69 0.57 0.99 2 0.97
GMI 0.56 0.69 0. 0.92
J-Index 0.54 0.58 0.98
GVP 0.76 0.62 A7 0.81
MAGE 0.71 0.61 0.85 0.92
MODD 0.69 0.60 0.89 0.96
CONGA:1 0.74 0.63 0.80 0.87
CONGA: 0.74 0 . 0.82 0.91
CONGA4 0.72 0.88 0.82 0.93

1.Area under the receiver operating characteristics (R@ g if a participant was meeting the clinical target
established by the Advanced Technologies and Trea TD). Area under the ROC curves for the following
metrics are shown: Summary statistics shown for he i BALc), the comprehensive glucose pentagon area (CGP),

Several metr correlated with extreme ranges of glycemia (time < 54mg/dL,
time > 250 mg oderate ranges of glycemia (time < 70 mg/dL, time > 180 mg/dL)
while t i with other metrics. GRADE and GMI had higher correlations with
ycemia. GRADE is calculated by taking the average of transformed
hile GMI is a function of mean glucose. Since individuals on average spend
e in moderate ranges of glycemia compared to severe ranges, time in moderate ranges
carry more weight when calculating composite scores based on the mean of all glucose

measurements, which explains by GRADE and GMI are more sensitive to moderate ranges.

14



HbA1c also had higher correlations with moderate ranges of glycemia, which makes sense given

that HbA1c is proportional to mean glucose.

Other metrics including CGP, PGS, ADRR, the Q-score and measures of glycemic

variability were more correlated with time in extreme ranges of glycemia than mode

It is likely that those who spend more time in extreme ranges have less control theibg
and are therefore more likely to experience both extreme hypoglycemia ergl , and
therefore have a higher glucose variability. The CGP, PGS, and Q-sco hin rated time

in range into the calculation of their overall values, which m igher

correlations with the extreme ranges. An increase or a d in range may be more

indicative of an increase or decrease in the extreme ran moderate ranges of

hypoglycemia and hyperglycemia.

ROC curves were used to assess éach I ility to predict meeting the clinical

targets for glycemic indices. Hb edictor of meeting hypoglycemia clinical

targets, which is unsurprising given correlation with time in hypoglycemia shown in

table 3. The model s a predictor made the correct prediction for meeting the time <

54 mg/dL targ e and made the correct prediction 57% of the time for meeting
the tim . While correlation between time in severe hypoglycemia and ADRR
correctly predicted meeting the clinical target 84% of the time, at least

e tham any other metric. Trends in area under the curve were similar to trends in

ion coefficients when looking at the associations between composite scores and time in
range and hyperglycemia. MODD and MAGE appeared to be strong predictors of time in range

and hyperglycemia, despite having more moderate correlations with these metrics.

15



Most CGM derived composite scores were better predictors of both hyperglycemia and

hypoglycemia compared to HbAlc. HbAlc was a poor predictor of time in hypoglycemia and

was moderately correlated with time in range and time in hyperglycemia. Likewise, ROC cur
showed HbA1c to be a poor predictor of meeting clinical targets for time in hypoglyc

was inferior to most CGM derived metrics when predicting if individuals met b

bA1l time in
T g, N0 CONSensus

ia. Recent research has

hyperglycemia and hypoglycemia targets.

Prior research has shown that moderate correlations exist b
range and between HbA1c and time in hyperglycemia (Beck
has been reached as to the relationship between HbAl1c

suggested a J-shaped relationship, with higher risk of h occurring at extremely high

or low values of Alc (Gimenez et al., 2018). , other research as shown a negative

relationship between HbAl1c and hypo et al., 2016). Our study showed a week
negative relationship between H an cemia. The use of CGM devices my alter the

relationship between HbAlc and ture research should evaluate the association

between HbAlc and ia in those not using CGM (Giminez et al., 2018).

No stu ined the relationship between composite scores and time in range,
time in hyperglycemia, and compared these correlations to

time in \A
c ith 1c. To date no study has evaluated the ability of composite metrics or
\)re ct meeting ATTD clinical targets for the percentage of time in range,
emia and hyperglycemia. This study provides a comprehensive evaluation of a large
Q ber of CGM derived composite as measures of glycemic control and compares these
measures with the current standard measure of glycemia control, HbAlc. Composite scores that

reflect overall glycemic control in a single measure and that break down hypo and

16



hyperglycemia as well as other aspects of the glucose profile into smaller sub-scores are

desirable, and further research should seek to develop and use such measures.

Limitations

This study was a secondary analysis of data from the JDRF clinical trial to ass
efficacy of CGM. This trial was conducted from 2007-2009, and CGM technol
significantly from that time, therefore this analysis should be repeated wi rec .
While we were able to compare CGM metrics based on their correlati ith ti various
0

ranges, we could not evaluate the associations between these

n diabetes
related complications such as nephropathy, neuropathy, iabetic ketoacidosis. It
has been established that HbALlc is strongly associated plications (Nathan et al.,
2013), therefore in order to claim that CGM etrics are superior to HbAlc when
evaluating patients with type 1 diabete ion between complications and said
metrics needs to be established. ollecting CGM data has lasted long enough to

capture long term complications, h oint glucose profiles collected during the DCCT

study may potentiallygbe u a surrogate for CGM data and used to compute composite
ei [

scores and eval ciattons with long term complications. Finally, CGM use may have
distorted a etween HbALc and indices of glycemia (Gimenez et al., 2018).
ch

Fut d use outcomes calculated from SMBG or other biochemical measures to

r
H nd CGM composite scores.

N
%on
% HbA1c was weakly correlated with time in hypoglycemia and should not be used to

evaluate hypoglycemia in patients with type 1 diabetes. Better measurements than HbA1c are

available to assess risk of hyperglycemia, including ADRR and GRADE. HbA1c had moderate

17



correlations with time in range and time in hyperglycemia, however metrics such as the Q-score,

GMI, and the J-index had superior correlations with time in range and hyperglycemia.

Composite scores derived from CGM data can provide a more accurate view of an individual
glucose profile than HbAlc. While we did not identify a single composite score that
correlated with time in range, time in hypoglycemia, and time in hyperglycemia
CGP, GRADE, and GMI had higher correlations with time in all glucose r
HbA1lc. The use of these composite scores is recommended when ev

ing t cemic

control of individuals with type 1 diabetes.

Public Health Significance
Glycemic control is a challenge for individuals abetes, and it is important
for health professionals to measure it as acc yaSypossible. 1t is also important when
evaluating the efficacy of diabetes trea in ials to use primary outcomes that
reflect overall glycemic control. Fhis, stu trates that several metrics including CGP,

GMI, and GRADE were consisten hly correlated with time in hypoglycemia and

hyperglycemia than 1 the case of GRADE and CGP, these metrics can be broken up
into sub-scales re othrhypoglycemia and hyperglycemia risk (Hill et al., 2007,

% use of these metrics would provide physicians with a more accurate
ass m

control when determining how best to treat their patients.

18



References

American Diabetes Association. (2019). Hypoglycemia (Low Blood Glucose). Re
http://lwww.diabetes.org/living-with-diabetes/treatment-and-care/blo
control/hypoglycemia-low-blood.html

Augstein, P., Heinke, P., Vogt, L., Vogt, R., Rackow, C., Kohner sieder, E. (2015).

Q-Score: Development of a new metric for continuo ing that enables
stratification of antihyperglycaemic therapies. ine'Disorders, 15(1).

doi:10.1186/s12902-015-0019-0

Battelino, T., Danne, T., Bergenstal, R., Ame ck, R., Beister, T., ... Phillip, M. (2019).

Clinical targets for continuous 0se maen g data interpretation: Recommendations
from the international co range. Diabetes Care, 42(8), 1593-1603.

Retrieved from https://doi.o .2337/dci19-0028

Beck, R. W., Berge

Rodbar
\
11

« 932296818822496
\V., onnor, C. G., Mullen, D. M., Wesley, D. M., & Bergenstal, R. M. (2017). The
$ lacy of average: How using HbAlc alone to assess glycemic control can be
% misleading. Diabetes Care, 40(8), 994-999. doi:10.2337/dc17-0636

Bergenstal, R. M., Beck, R. W., Close, K. L., Grunberger, G., Sacks, D. B., Kowalski, A., ...

Cefalu, W. T. (2018). Glucose Management Indicator (GMI): A new term for estimating

heng, P., Kollman, C., Carlson, A. L., Johnson, M. L., &
e relationships between time in range, hyperglycemia metrics,

| of Diabetes Science and Technology, 193229681882249.

19


http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-

A1C from continuous glucose monitoring. Diabetes Care, 41(11), 2275-2280.

d0i:10.2337/dc18-1581

Cohen, R. M., Franco, R. S., Khera, P. K., Smith, E. P., Lindsell, C. J., Ciraolo, P. I, ...
Joiner, C. H. (2008). Red cell life span heterogeneity in hematologically norm

is sufficient to alter HbAlc. Blood, 112(10), 4284-4291. doi:10.1182/bl -

154112
Costa, M. D., Henriques, T., Munshi, M. N., Segal, A. R., & Goldber . L. 4).
Dynamical glucometry: Use of multiscale entropy anal be haos: An
0

Interdisciplinary Journal of Nonlinear Science, 2 :10.1063/1.4894537

Danne, T., Nimri, R., Battelino, T., Bergenstal, R. M. evries, J. H., ...

Phillup, M. (2017). International cons tinuous glucose

monitoring. Diabetes Care, 40, ed from https://doi.org/10.2337/dc17-

1600

Gimenez, M., Tannen, A., Reddy, do, V., Conget, 1., & Oliver, N. (2018). Revisiting

the relationships b measures of glycemic control and hypoglycemia in continuous

glucose ta Sets. Yearbook of Paediatric Endocrinology.

doi¢
Ha eils
asso
Id, real-time continuous glucose monitoring. Diabetes, 67(Supplement 1), 80-LB.
: H

0.4
, Bartholdy, T., Djurhuus, C. B., & Kvist, K. (2018). Glycemic variability

d with time spent in hypoglycemia in type 1 diabetes: Explorative data in real-

doi:10.2337/db18-80-Ib

enriques, T., Munshi, M. N., Segal, A. R., Costa, M. D., & Goldberger, A. L. (2014).

“Glucose-at-a-Glance”: New method to visualize the dynamics of continuous glucose

20


https://doi.org/10.2337/dc17-1600
https://doi.org/10.2337/dc17-1600

monitoring data. Journal of Diabetes Science and Technology, 8(2), 299-306.

d0i:10.1177/1932296814524095

Hill, N. R., Hindmarsh, P. C., Stevens, R. J., Stratton, I. M., Levy, J. C., & Matthews, D. R.
(2007). A method for assessing quality of control from glucose profiles. Diab

Medicine, 24(7), 753-758. doi:10.1111/j.1464-5491.2007.02119.x

Hirsch, I. B., Balo, A. K., Sayer, K., Garcia, A., Buckingham, B. A., & Pe . A
simple composite metric for the assessment of glycemic statu co us glucose
jal

monitoring data: Implications for clinical practice and a eas. Diabetes

Technology & Therapeutics, 19(S3), S-38-S-48.

Kohnert, K. (2015). Utility of different glycemic con ptimizing management of

diabetes. World Journal of Diabetes, 9/wjd.v6.i1.17

Kohnert, K. (2017). Indices for assess t ity of glycemic control and glucose
dynamics from continuous,gluc onitoring. International Journal of Diabetes and
Clinical Research, 4(1). d /2377-3634/1410071

der-Frederick, L., & Clarke, W. (2006). Evaluation of a

new me se variability in diabetes. Diabetes Care, 29(11), 2433-2438.

Marc CGi
‘

E., & Fierabracci, A. (2018). Type 1 diabetes and its multi-factorial
esis: The putative role of NK cells. International Journal of Molecular
nces, 19(3), 794. doi:10.3390/ijms19030794

%%w! G., Lendvai, Z., Lodi, C., Koncz, L., Zakarias, D., Schuster, G., ... Toth-Heyn, P.

(2015). Evaluation of an open access software for calculating glucose variability

21



parameters of a continuous glucose monitoring system applied at pediatric intensive care

unit. BioMedical Engineering OnLine, 14(1). doi:10.1186/s12938-015-0035-3

MccCall, A. L., Cox, D. J., Brodows, R., Crean, J., Johns, D., & Kovatchev, B. (2009). Reduc
daily risk of glycemic variability: Comparison of exenatide with insulin
glargine. Diabetes Technology & Therapeutics, 11(6), 339-344.
doi:10.1089/dia.2008.0107

Nathan, D. M. (2013). The Diabetes Control and Complications Trial of Diabetes

Interventions and Complications Study at 30 Years: O Care, 37(1), 9-
16. doi:10.2337/dc13-2112

Peyser, T. A., Balo, A. K., Buckingham, B. A., Hirsc ia, A. (2018). Glycemic
variability percentage: A novel metho assessing emic variability from
continuous glucose monitor dat ogy & Therapeutics, 20(1), 6-16.
doi:10.1089/dia.2017.0187

Rawlings, R. A., Shi, H., Yuan, L ., Pop-Busui, R., & Nelson, P. W. (2011).

Translating gluco iabili trics into the clinic via continuous glucose monitoring:

r diabetes evaluation (CGM-GUIDE®). Diabetes

apeutics, 13(12), 1241-1248. doi:10.1089/dia.2011.0099

cose variability. Diabetes, 62(5), 1398-1404. doi:10.2337/db12-1396

. V., Beck, R. W., Bode, B. W., Chase, H. P., Clemons, R., Scharer, R. F., ...

, D. (2008). Continuous glucose monitoring and intensive treatment of type 1

diabetes. New England Journal of Medicine, 359(14), 1464-1476.

doi:10.1056/NEJM0a0805017

22



Tsujino, D., Nishimura, R., Onda, Y., Seo, C., Ando, K., Morimoto, A., & Utsunomiya, K.

(2016). The relationship between HbA1c values and the occurrence of hypoglycemia as

assessed by continuous glucose monitoring in patients with type 1 diabetes. Diabetolo
& Metabolic Syndrome, 8(1). doi:10.1186/s13098-016-0167-z
U.S. National Library of Medicine. (2017, April 14). Randomized study of real-ti S

Glucose Monitors (RT-CGM) in the management of type 1 diabete rie

\ (2018). The

ssessing glycemic

https://clinicaltrials.gov/ct2/show/NCT00406133

Vigersky, R. A., Shin, J., Jiang, B., Siegmund, T., McMahon,
comprehensive glucose pentagon: A glucose-centr

control in persons with diabetes. Journal of D nd Technology, 12(1),

114-123. d0i:10.1177/193229681771

23






